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Abstract
Spatio-temporal inventory of natural hazards is a challenging task especially in rural or remote
areas in the Global South where data collection at regional scale is difficult. Citizen science, i.e.
involvement of no-experts in collecting information and co-creation of knowledge with experts to
solve societal and environmental problems, has been suggested as a viable approach to tackle this
bottleneck, although the reliability of the resulting data is often questioned. Here we analyse an
inventory of geo-hydrological hazards (landslides and floods) reported by a network of citizen
scientists in the Rwenzori Mountains, Uganda, established since 2017. We assess the precision,
sensitivity and potential biases affecting this citizen science-based hazard inventory. We compare
the citizen science-based records with two independent inventories, one collected through
systematic fieldwork and another by PlanetScope satellite imagery mapping for the period between
May 2019 and May 2020. The precision of the geo-observer data is higher (99% and 100% for
landslides and floods, respectively) than that of satellite-based data (44% and 84%, respectively)
indicative of fewer false positives in the former inventory. Also, citizen scientists have a higher
sensitivity in reporting landslides (51%) compared to satellite imagery (39%) in addition to being
able to report the events a few days after the occurrence. In contrast, the sensitivity of
satellite-based flood detection is higher than that of citizen scientists. The probability of landslide
events being reported by citizen scientists depends both on citizen scientists and hazard specific
features (impact, landslide-citizen scientist home distance, landslide-road access distance and
altitude). Although satellite imagery mapping could result in a spatially less biased inventory, small
landslides are often missed while shallow ones can easily be confused with freshly cleared
vegetation. Also, in a dominantly cloudy environment, it can take several days to weeks before a
cloud-free satellite image can be obtained. In summary, the typically rapid response time of citizen
scientists can result in faster information with high reliability at the risk of missing out almost half
of the occurrences. Citizen scientists also provide more data on impact and type of land use,
something difficult to achieve using satellite imagery. Working with farmers at village level as
citizen scientists can facilitate covering a wider geographical area while reducing the area
monitored by each citizen scientist at the same time.
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1. Introduction

Climate-related disasters are on the rise (IFRC 2016,
UNISDR 2015a, Papathoma-Köhle et al 2016). They
continue to claim lives of many, destroy infrastruc-
ture, damage property, and disrupt livelihood activit-
ies that eventually undermine the welfare of affected
societies. According to the Sendai framework for dis-
aster risk reduction (2015–2030), increasing expos-
ure and vulnerabilities have steadily increased the
risk to natural hazards and the associated disasters
(UNISDR 2015b). To be able to foster national dis-
aster risk reduction strategies, it is necessary to pro-
mote local risk assessment studies based on continu-
ous data collection on disaster occurrences and the
impacts they cause. Disaster risk is categorized into
intensive and extensive risk. Intensive risk is asso-
ciated with large impact events of low frequency
(Hamdan 2015). Extensive risk on the other hand
involves small, frequent and widely spread hazard
events such as landslides and floods (UNDRR 2015).
Such geo-hydrological hazard events rarely make it to
national media, making their assessment challenging
despite their cumulative impact being large (Hamdan
2015). This is particularly the case in developing
nations especially the tropical mountainous regions
of Africa where spatially dispersed small hazards are
commonbut their impact remain under-documented
(UNISDR 2015a, UNDRR 2019a). In these moun-
tainous regions, high population densities are often
found, frequently on the rise and combined with high
societal vulnerabilities (UNISDR 2015a, CRED 2017,
Zhou et al 2019).

Bottlenecks in regional and subnational Disaster
Risk Reduction (DRR) include insufficient insti-
tutional capacities, lack of data and inadequate
budget allocations (UNISDR 2015b, AUC 2018,
UNDRR 2019a). Comprehensive multi-hazard ana-
lysis can contribute to better risk management
through: (a) a clear understanding of geograph-
ical concentrations of the disaster risk, (b) quan-
tification of potential impacts, and (c) identifica-
tion of key risk drivers (Pondard and Daly 2011).
This requires spatially and temporally explicit data
records including impact caused. The increasing
availability of very high spatial resolution satellite
imagery (such as IKONOS, QuickBird, PlanetScope,
and Pléiades) presents an opportunity for rapid and
accurate visual geo-hydrological hazard mapping at
different spatial and temporal scales (Rabonza et al
2016, Monsieurs et al 2018, Talisay et al 2019, Thiru-
murugan and Krishnaveni 2019, Jain et al 2021).
However, in tropical environments, persistent cloud
cover, often limits use of optical satellite remote sens-
ing for hazard detection (Robinson et al 2019). Visual
satellite image interpretation can also be affected
by mis-classifications as human-induced seasonal

land use changes can be perceived as potential geo-
hydrological hazards (Dewitte et al 2022, Jain et al
2021).

In the recent past, citizen science (CS) has
gained tremendous recognition (Danielsen et al 2014,
Aceves-Bueno et al 2017, McKinley et al 2017, Hicks
et al 2019) although it has existed for long time
(Silvertown 2009, Eitzel et al 2017). This is partly
due to the increasing realization among scientists of
the benefits of this practice wherein non-experts and
experts engage and collaborate to solve real-world
problems (Cohn 2008). Citizen scientists (CSs) can
engage in various stages of the research cycle ran-
ging from collecting data to disseminating study find-
ings (Dickinson et al 2012, Aceves-Bueno et al 2017,
Cunha et al 2017, Phillips et al 2018). CS therefore
has been interpreted and defined differently depend-
ing on context and field in which it is being applied.
According to Kullenberg and Kasperowski (2016), CS
is understood to involve participation of citizens in
the collection and analysis of data for research in
different fields including ecology, biology and con-
servation (Kullenberg and Kasperowski 2016). It can
also involve environmentalmonitoring and inventory
projects (Haklay et al 2021). In the context of DRR,
the involvement of citizens in recording or mapping
hazards can be an example of CS projects (Hicks
et al 2019). In this research, the project involves the
participation of non-expert citizens in mapping geo-
hydrological hazards and their impacts with goal of
scientifically understanding the spatio-temporal dis-
tributions, vulnerabilities and risks imposed by the
disasters. Participatory approaches enable data collec-
tion on a larger geographic scale and over a longer
time period than is possible inmore conventional sci-
entific research (Cohn 2008). Furthermore, collabor-
ating with community members in disaster assess-
ment facilitates complete understanding of disaster
risk in a local context (Bwambale et al 2022).

In 2017, a CS network, coined the geo-observer
network, was established in the Rwenzori Mountains,
Uganda (Jacobs et al 2019) mainly to (a) record
and report environmental hazards (including dates
of occurrence and impact caused), (b) disseminate
scientific research findings and participate in devel-
oping and implementing DRR strategies. This was
based on an understanding that people in the affected
communities are better placed to monitor their own
places and participate in developing DRR strategies.
The network currently consists of 30 CSs, trained
to detect, and report information on eight different
hazards (landslides, floods (here referring to over-
flow of large volumes of water beyond the usual nor-
mal levels mainly during or after rainfall), droughts,
crop and livestock pests and diseases, earthquakes,
lightnings, windstorms, and hailstorms) by filling a
simple structured questionnaire programmed in a
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KoboCollect application using smartphone techno-
logy (Jacobs et al 2019). With a mobile internet con-
nection, the information recorded in a standard form
(including location, type of hazard, size, picture of the
affected elements and impact onhousing, population,
crops and physical infrastructures) is uploaded to a
central KoboCollect account managed by a research
assistant based at Mountains of the Moon Univer-
sity. This online database contains all information
recorded for each event, including GPS coordinate,
pictures, and the ID of the reporting citizen scient-
ist. Each geo-observer of the network is responsible
to report all events for a specific territory, typically
one or two parish (es). A parish is a second smal-
lest administrative unit in Uganda next to a village.
The parish sizes are not homogeneous as the bound-
aries are mostly defined by physical features such as
rivers, streams, wetlands, roads and gorges. Although
the network has demonstrated potential for CS-based
hazard mapping Jacobs et al (2019), the growing
inventory has to date not been used for hazard or
risk assessment. Prior to valorisation of the data, i.e.
using the CS-based hazard location and impact on
society to constrain risk assessment and inform risk
reduction strategies, in hazard and risk assessments,
the reliability of the citizen-based dataset needs to be
assessed (Jacobs et al 2019) as citizen science based
data might be affected by biases or issues of reliab-
ility or completeness (Bird et al 2014, Lewandowski
and Specht 2015, Haworth 2016, Aceves-Bueno et al
2017, Haworth et al 2018, Jacobs et al 2019). This
study therefore is aimed at evaluating the data quality
of the citizen-based inventory in the RwenzoriMoun-
tains. Focusing on landslides and floods, we validate
the CSs reports through systematic fieldwork, ana-
lyse the precision and sensitivity of the inventory,
and compare these to an inventory constructed using
visual interpretation of very high-resolution satel-
lite imagery. Finally, we identify potential underlying
factors determining the detectability of landslides by
CSs.

2. Materials andmethods

2.1. Study area
Rwenzori Mountains are located in tropical Africa
(Peel et al 2007) across the southwestern border of
Uganda and eastern D.R Congo. This mountainous
region suffers from frequent landslide (Jacobs et al
2016a) and floods (Jacobs et al 2016b). The Ugandan
side of the mountains is characterized mainly by
protected zones (national parks, forest, and wildlife
reserves) and inhabited zones (figure 1). This study
focuses on landslide and flood events on the inhab-
ited Ugandan side of the Rwenzori Mountains, spe-
cifically those occurring in the two districts of Kasese
and Bundibugyo.

2.2. Landslide and flood inventory
2.2.1. Citizen science-based inventory
The CS based inventory was established from a selec-
tion of 18 CSs active in 30 selected parishes out of
the 41 covered by CSs in the study districts (figure 1).
In selecting the parishes, in addition to ensuring a
good spatial spread over the two study districts, con-
siderations were made to ensure representation of
both parishes from which many reports had been
received and those with little or no reports at all.
The methodology for data-collection on landslides
and floods is described in (Jacobs et al 2019). This
dataset contains among others, details on the location
(GPS coordinates), timing and damage inflicted by
a hazard event (individual landslide or flood occur-
rence) and is typically collected within a timespan of
a few days after occurrence. Although the data col-
lection started in February 2017, we here narrow the
dataset to landslides and floods reported between 1
May 2019 and 30 May 2020 because landslide scars,
particularly for shallow and smaller landslides, are
not always preserved in the landscape due to quick
vegetation regrowth or reclamation by agriculture.
As soon as the hazard reports are submitted by the
CSs, they go through a manual validation process
by a research assistant to remove reports with obvi-
ous errors like presence of incorrect hazard pictures
(pictures not related to the hazard being reported)
and suspicious impact (Jacobs et al 2019). This was
followed with automated screening using a Python
script to identify potential inconsistences (includ-
ing GPS position precision, date of recording com-
pared with date of occurrence). In the 1 year period
considered in this study, 292 and 75 landslide and
flood reports had been submitted by the CSs. After
the manual and automated screening, the consolid-
ated dataset consisted of 255 landslide and 59 flood
reports.

2.2.2. Satellite imagery-based inventory
The remote sensing (RS)-based inventory was built
for the same period (1 May 2019 to 30 May 2020)
as the retained CS-based inventory from ortho-
rectified 3 m resolution visual optical images of Plan-
etScope (Planet 2016). PlanetScope offers among
other products visual geometrically and atmospher-
ically corrected 3-band; Red Green Blue (RGB) and
analytic 4-band (RGB and Near Infra-Red) images
for different places across the globe with a one-day
revisit time (Planet 2021). The imagery is collected as
a series of framed overlapping scenes from a single
satellite in a single pass (Planet 2019). To ensure
the images acquired were suitable for visualization
application, a 15% cloud threshold was used before
download. However, due to persistent cloud cover,
it was not possible to get cloud free images covering
the two study districts at the same time at all times.
For each clear image of one district, the nearest in
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Figure 1.Map showing the study districts of Bundibugyo and Kasese, and landslide and flood events reported by geo-observers
for the period 1 May 2019 to 30 May 2020 in the parishes selected for this study.

time image of the other district was used. From each
image (appendix A), potential landslides and flood
events were digitized in a GIS environment. By over-
laying the already constructed shapefile of digitized
events on a successive satellite image, double digitiz-
ing was avoided. A total of 458 landslide and 59 flood

potential events respectively were digitized from the
satellite images.

2.2.3. Expert-based field assessment and validation
From mid-September to mid-December 2020, a field
assessment and validation was conducted by the first
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Figure 2. Examples of flood events along river Nyamwamba (a), Kasese district (5 August 2020) and river Kirumya (b),
Bundibugyo district (16 November 2020) as well as landslides in Bundikeki (c) and Kirindi (d) parishes in Bundibugyo district
(10 January 2021 and 6 February 2021, respectively).

author to systematically map landslides and flood
occurrences (figure 2) in the 30 selected parishes and
verify the events reported in the CS database and
those events identified through visual interpretation
of satellite imagery. For each parish, a local guide was
hired to ensure all the possible areas of the adminis-
trative unit were reached. This facilitated mapping as
many landslide and flood events that occurred in the
period of May 2019 and May 2020 as possible. The
CSs reports, and the RS-based inventory were also
verified by systematically visiting these locations.

2.3. Data validation
Each event that would be found to exist in the field
and correctly identified by the CSs and/or mapped
from the satellite imagery, was labelled True Posit-
ive (TP). Those erroneously mapped as landslide or
flood events or found not to exist in the field, were
labelled False Positives (FP). Events that were found
to exist in the field but had been missed by either
the CSs or the RS inventory process were labelled
False Negatives (FN). The process is illustrated using
a hypothetical field space in figure 3. These clas-
sifications were then used in subsequent analyses
outlined below and summarized in the schematic
figure 4.

2.3.1. Sensitivity, precision, F1
Sensitivity (also called true positive rate or recall rate)
is used to refer to the proportion of existing positives
that are correctly identified or detected as positives
(Powers 2008, Tharwat 2018, Chicco and Jurman
2020). In previous studies, sensitivity has been used to
measure the performance of diagnostic tests (Genders
et al 2012) and classification performance in com-
putational linguistics (Powers 2008). In this study,
sensitivity is used to refer to the proportion of land-
slides/floods that occurred and were correctly repor-
ted by CSs and/or mapped from satellite imagery. It
is defined as given in equation (1).

Sensitivity=
TP

(TP+ FN)
. (1)

Precision (confidence) has been applied in informa-
tion retrieval and data mining studies to measure the
predictive performance ofmodels. It refers to the pro-
portion of predicted positives that are truly positives
(Powers 2008, Boughorbel et al 2017). In this study
it denotes the proportion of detected landslides or
floods that were real landslides or floods in the field.
It is calculated as given in equation (2).

Precision=
TP

(TP+ FP)
. (2)
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Figure 3. Illustration of a hypothetical field space where brown dots represent events (landslide/floods) that occurred, green dots
represent CSs mapped hazards while blue dots represent RS-based inventory. TP represent events found to exist in the field and
correctly identified by the CSs or mapped from the satellite imagery. FP represent features erroneously mapped as landslide or
flood events or found not to exist in the field while FN represent events that were detected in the field but had been missed by
either the CSs or the RS inventory process.

Figure 4. Schematic flow of the entire study with data inventories (blue fill), inventory verification, quality, and bias analysis (dark
brown fill).

The F1 score (F measure) is an integration of both
sensitivity and precision. It gives the harmonic mean
of sensitivity and precision and ranges between 0 and
1 (Tharwat 2018). Although the metric has received
some criticism (Flach andKull 2015), it is still a widely
used measure of classification or predictive perform-
ance studies (Genders et al 2012, Chicco and Jurman
2020, Chicco et al 2021). Here it was applied to meas-
ure the overall performance of CSs and satellite in
detecting landslide and flood occurrences. The higher
the F1 score, the better the detective performance of
the hazard inventory approach. It is calculated as in
equation (3).

F1 score=
2TP

2TP+ FP+ FN
. (3)

The comparison of the CS-based- and satellite-based
inventories with the field data and subsequent calcu-
lation of sensitivity, precision and F1 statistics allowed
a direct contrasting of the data quality of the two
former inventories (figure 4).

2.3.2. Spatial bias analysis
CS-based inventories can be affected by spatial biases
(Zhang and Zhu 2018). In our study, the landslide
inventory in particular could be affected by biases:
landslide events are spatially more dispersed than
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floods and are more frequent but smaller in size,
which could render them less noticeable. CSs might
have more knowledge or be more likely to visit areas
closer to their homestead (Pernat et al 2021). In
addition, landslide inventories by CSs but also by
experts (Dickinson et al 2010) can be affected by a
bias towards those areas closer to the road network
(Wang et al 2020). This creates incompleteness issues
in such citizen-based databases. Here we examine the
potential sources of spatial biases by analysing factors
that determine whether a citizen scientist detects and
records a hazard event. To do this, a binary logistic
regression model was applied. Logistic regression is a
widely used modelling approach in determining rela-
tionships between a binary dummy dependent vari-
able and explanatory variables (Coughlin et al 1992,
Genders et al 2012, Nishadi 2019). In our case, the
binary dependent variable is whether or not a land-
slide that was confirmed in the field was reported by
the citizen scientist (1) or not (0). If landslide report-
ing ability is represented as Lsreport and X1, X2, X3, …,
Xn represent a set of potential explanatory variables,
the probability of a landslide being reported by CSs is
given as shown in equation (4).

P
(
Lsreport = 1

)
=

1

1+ e−(α+β1X1+β2X2+β3X3+.............βnXn)
. (4)

where P
(
Lsreport

)
is the probability of a landslide

being detected andβ1 toβn are regression coefficients.
The first set of explanatory variables used in equation
(4) model were landslide related factors. These
included landslide size, slope, altitude, landslide-
citizen scientist home distance, landslide-road access
distance and impact (weighted sum of effects on
humans, infrastructures and crops, appendix B).
Although even a low impact landslide event can be
detected and reported by a citizen scientist, the more
disastrous an event is, the higher is the chance that
such an event will be discussed on different plat-
forms and the easier it might be for a citizen scient-
ist to learn about it and detect it. The regression ana-
lysis was repeated while accounting for a fixed effect
of CSs (citizen scientist specific unique attributes).
To achieve this, unique identity (citizen scientist ID)
numbers were introduced in the model. To gain an
insight on how much variance is explained by each
of the factors included in the regression analysis, a
univariate logistic regression analysis was performed
for each of the variables. The Tjur’s coefficient of
discrimination, D, was then used as an indicator of
the individual contribution for a specific variable in
explaining variance in landslide detectability by the
CSs (Tjur 2009, Allison 2014). We then investigated
which factors could explain variations in the observed
individual odds ratios of CSs. This explorative ana-
lysis was done through a Spearman rank correlation
matrix involving individual odds ratios of CSs, age,

Table 1. Results from validation of CS and RS inventory through
systematic fieldwork.

Citizen scientists Satellite imagery

Outcome Landslides Floods Landslides Floods

True positive 218 46 165 48
False positive 3 0 208 9
False negative 207 20 260 18
Total 428 66 633 75
Sensitivity (%) 51 70 39 73
Precision (%) 99 100 44 84
F1 score 0.7 0.8 0.4 0.8

years spent reporting, size of the area monitored and
number of reports per citizen scientist.

3. Results

3.1. Landslide and flood detection
Out of the 255 and 59 landslides and floods retained
in the CS-based inventory after manual review and
automated screening of incoming reports, 221 land-
slides and 46 floods were verified in the field. Of the
459 landslides and 59 floods identified on satellite
images, 373 and 57 respectively could be verified in
the field (table 1). The remaining instances could not
be verified due to accessibility constraints in the field
and were not considered in further analysis. Results
show that CSs identify and report landslide and flood
hazards in their localities with 99% and 100% pre-
cision respectively (table 1). Table 1 however indic-
ates also a relatively low sensitivity for CS-based land-
slide and flood detection (51% and 70% respectively).
RS-based landslide and flood detection is less precise
particularly for landslides (39%) in addition to hav-
ing even lower sensitivity. RS-based flood detection
has a higher sensitivity compared with CS. Overall,
floods are more easily detected by both CSs and RS as
implied by F1 scores of 0.8 and 0.8 respectively.

3.2. Citizen scientists versus RS-based landslide
hazard detection
Table 2 shows a direct comparison betweenCS andRS
inventories in the form of a confusion matrix. Only
16% of the 425 landslides mapped in the field were
detected by both satellite and CS and 26%were detec-
ted by neither inventories. Remarkably, 35% of the
landslides was detected by the CS but not by the satel-
lite interpretation and 23% of satellite detected land-
slides were not identified by CSs. The high sum of
this diagonal demonstrates that both inventories are
to a large extent complementary and typically do not
detect the same events. While the average size of the
landslides detected and not detected by the CSs is not
statistically significant (Prob > z = 0.088), satellite
imagery detects larger events and tends tomiss out on
the small ones (Prob > z = 0.000). Through logistic
regression (appendix C; table 8), it was found out that
landslide detection byRS is significantly influenced by
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Table 2. Citizen scientists versus RS-based landslide detection.

CS-based inventory

RS-based inventory Detected Not detected Total Average size (m2)

Detected 69 (16%) 96 (23%) 165 (39%) 3713± 6196
Not detected 149 (35%) 111 (26%) 260 (61%) 792± 1558
Total 218 (51%) 207 (49%) 425 (100%) —
Average size (m2) 1489± 3413 2385± 5010 — —

Table 3. Logistic regression results for landslide related factors. z statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Variable Odds ratio Univariate Tjur’s D

Landslide impact 1.099∗∗∗ 0.028
Landslide geo-observer home distance 0.771∗∗∗ 0.055
Landslide road distance 0.873∗∗ 0.005
Slope 1.023 0.024
Land slide area 1 0.012
Altitude 1.001∗∗ 0.009
Constant 0.293∗∗ —
Tjur’s D 0.138 0.133

Prob > chi2 = 0.000

Table 4. Correlation matric for citizen scientists’ individual odds ratios and potential determinants.

Variables
Individual
odds ratios Age

Period of
operation Area covered

Number of
reports submitted

Individual odds ratios 1.000 — — — —
Age 0.778a 1.000 — — —
Period of operation 0.234 0.541 1.000 — —
Area covered 0.371 0.283 −0.353 1.000 —
Number of reports submitted 0.238 0.287 −0.187 0.563 1.000
a Significance at 0.05 confidence level.

landslide size, slope and altitude (Tjur’s D = 0.226).
A marginal effect post estimation showed that the
chances of missing out some landslides on a satellite
image increase as the landslide area reduces.

3.3. Factors that influence citizen science-based
landslide detectability
Results of the logistic regression show that the vari-
ation in landslide detectability by CSs is significantly
influenced by the landslide’s impact, the distance
between citizen scientist’s residence and the landslide,
the distance from the access roads to landslide and
altitude (table 3). The odds ratios confirm the hypo-
thesis that larger impact and shorter distance increase
the likelihood of landslide events being detected.
However, based on the Tjur’s D, these factors only
explain a small proportion (Tjur’s D = 0.138) of the
variations in landslide detectability. Through univari-
ate analysis, a Tjur’s D for each factor was generated
to gain an understanding of the maximum contribu-
tion of each individual factor to the variance in land-
slide detectability by CSs (table 3 column 3). Based
on the univariate analysis results, the landslide dis-
tance from the citizen scientist’s home plays the most
important role, followed by impact and slope in influ-
encing landslide detectability.

To check potentially controlling factors related to
the individual CSs included a fixed effect for each
individual in the logistic regression. This increased
the explanatory power of themodel (Tjur’s D= 0.435
from 0.138). In a final step, we explored which per-
sonal characteristics could influence the resulting
odds ratios by simple correlation with the variables
as presented in table 4.

4. Discussion

4.1. Sensitivity and precision in CS- and RS-based
hazard detection
CSs can correctly identify and report georeferenced
hazard information comparable to research experts.
Although no control trial was done to quantify the
added value of the training workshops, this high pre-
cision rate after training workshops and in-field prac-
tice concurs with what Lewandowsli and Spencht
(2015) report on the importance of adjusting pro-
tocols and volunteers training in improving data
quality (Lewandowski and Specht 2015). According
to Paul et al (2014), CS-based data collection pro-
grams result in datasets with quality attributes sim-
ilar to those established systematically by experts
(Paul et al 2014). However, their inventories (CSs)
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suffer incompleteness challenges especially those that
involve mapping small, frequent but spatially spread
events like landslides (Rohan et al 2021).

Despite the relatively low sensitivity, the CS data-
base outperformed the RS-based inventory in terms
of sensitivity, precision and F1 scores when consid-
ering landslides. The low sensitivity and precision of
RS-based inventory compared to CSs and other stud-
ies are due to several factors. We used satellite images
at a 3 m resolution while other studies used Google
Earth images that offer a 0.3–0.6 m resolution (Hao
et al 2020, Ubaidulloev et al 2021). The images avail-
able in Google Earth are usually acquired with a lower
temporal resolution compared with the PlanetScope
images, and thereforemay capture landslide scars that
are already (partially) concealed by the regeneration
of the vegetation (Dewitte et al 2022). This reduc-
tion of the spectral signature of the landslides identi-
fied via Google Earth is however counterbalanced by
the higher spatial resolution of the images. In addi-
tion, CSs visit the field after a few days, allowing them
to identify very small landslides that cannot be seen
on a satellite image. Furthermore, the inventory was
limited to areas monitored by CSs. These areas are
characterized by cultivated landscapes made of par-
cels that present shape that could be mistaken for
landslides on the satellite image. The confusion mat-
rix (table 2) demonstrates that the CS inventory and
the RS inventory are largely complementary. How-
ever, the CS inventory in turn is affected by biases
predominantly relating to a fixed individual citizen
scientist effect and to lesser extent relating to the
landslide characteristics, impact, and location. The
further the event from the residence of the citizen sci-
entist or the community access roads, the higher are
the chances of such an event being missed. The mag-
nitude of impact and nature of the element impacted
are also important. This supports our hypothesis that
more destructive events are more readily communic-
ated or discussed on different platforms and so easier
to detect by CSs. People are more motivated to report
events that affect their houses or cause injuries/death
than those that affect crops and pastures. This could
partially be due to the perception that CSs reports
reach humanitarian agencies who eventually distrib-
ute relief items mainly to those whose houses get
damaged. Most landslide events that affects houses
in the study area are usually small resulting from (a)
steep slope cutswhile establishing platforms for house
construction and (b) small scale cropping farming
on the steep slopes. This partially explains why CSs
report more of small events. The observed improve-
ment in the explanatory power of the model after
introducing the citizen scientist ID implies that CSs
specific characteristics (here bundled into one fixed
effect) play an important role in influencing the like-
lihood of landslides being detected. Thus, while CS-
based inventories might depend on socio-cultural,

infrastructural, motivational factors of the CSs and
nature of the hazard, satellite imagery largely depends
on nature of the target object in the feature space (size
of the object) and the prevailing atmospheric condi-
tions (Agapiou et al 2011, Selva 2021). In general, it
should be noted that the ability of CSs to detect land-
slides that have occurred largely depend on whether
they get informed about their occurrence. The pos-
itive correlation between number of reports and age
of CSs (table 4) can be explained by the fact that the
older the CSs are, the higher the chance of them hav-
ing a stable residence in their village and the wider
the social network built fromwhomnews about land-
slide occurrences can be received. In addition, older
CSs tend to stay longer in the reporting network as
indicated by a strong positive correlation (r = 0.55)
between years of operation and CSs age (table 4).

CS-based inventories and RS-based inventories
not only differ in which landslides are detected, but
both inventory methods also fundamentally differ in
the type of information that can be collected: CSs
can collect data on the impact associated with the
hazards that is not visible through remotely sensed
information. RS-based mapping on the other hand
provides an opportunity to record geo-hydrological
hazards even in inaccessible areas (Ji et al 2020).
On the other hand, while revisit periods of very
high-resolution satellites are shortening, image inter-
pretation is oftentimes still hampered by cloud cov-
erage, while CSs tend to visit, and map affected
sites within few days after occurrence (Jacobs et al
2019). The implication here is that CS-based land-
slide detection and very high-resolution (⩽3m) satel-
lite imagery are complementary in spatial extents,
types of landslides and types of information collec-
ted, but not substitutes. Because of this complement-
arity, CS data represent an added value to hazard
assessment and risk analysis for example in determin-
ing thresholds for landslide triggering factors (Mon-
sieurs et al 2019) and supplementing incomplete
landslide inventories (Samodra et al 2018). CSs gener-
ate reliable georeferenced hazard information includ-
ing information on timing and damage inflicted, par-
ticularly in data-poor countries like Uganda where
extensive disaster risk is high. Such events do not
easily make it to social or formal media platforms
in addition to not meeting the impact thresholds of
the existing national (DesInventar) data repositor-
ies (UNDRR 2019b) and global (EM-DAT) databases
(IFRC). To reduce incompleteness challenges, it is
relevant for projects and programs aimed at spatio-
temporal explicit hazard assessment to complement
high spatial resolution satellite image-based hazard
inventories with CS hazard sensing. By visiting the
affected scenes within a few days and documenting
the impact caused, CS-based inventory can be use-
ful in temporal landslide assessment and vulnerability
analysis which are prerequisites for risk analysis.
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4.2. Limitations of the data used in the analysis
Although we find the quality of the CS-based invent-
ory of good quality, maintaining a big network of
CSs to cover a large geographical area over time
can be challenging and require investment to equip,
train and continuously monitor the activities of CSs.
Although CSs report geo-hydrological hazards with
high precision, the inventory should be carefully used
for regional susceptibility and risk assessments as it
is not free from spatial biases. In addition, the satel-
lite imagery digitization was entirely made by the
main author of this manuscript. Although efforts
were made to do it systematically, it does not com-
pletely erase possibility of omitting or including cer-
tain features that would respectively be or not be
included by other users.

5. Conclusion

This study demonstrated the reliability of CS-based
hazard detection and its complementarity with RS-
based inventory. It also showed that by integrat-
ing CS-based hazard inventories with existing high
resolution satellite imagery in spatio-temporal geo-
hydrological hazard studies can help to overcome the
incompleteness challenges. The Sendai framework
for DRR advocates for inclusive national and local
hazard assessment and risk management (UNISDR
2015b) and so CS provides a viable approach not
only for rural and remote mountainous areas such
as the Rwenzori ranges, but for all at-risk regions
where traditional observation networks and infra-
structures are weak or absent and local communit-
ies directly impacted. The network presents a desired

multidimensional approach in cogenerating know-
ledge and disseminating research findings and could
enhance participatory disaster risk management at
local level.
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Appendix A. List of dates andmonths (table 5) in which images were acquired to build
the RS-based inventory

Table 5. List of dates and months in which images were acquired to build the RS-based inventory.

Bundibugyo district Kasese

3 May 2019 3 May 2019
5 July 2019 14 and 18 July 2019
13 September 2019 22 September 2019
27 December 2019 30 December 2019 and 1 January 2020
16 February 2020 12, 13 (area near D.R Congo border only) and 16 February 2020
8 April 2020 7 and 8 April 2020
13 May 2020 13 May 2020
26 May 2020 26 and 30 May 2020

Appendix B. Landslide combined impact
(tables 6 and 7) value development
throughmulticriteria additive weighing

Landslide impact is an important variable to con-
sider while analysing factors that influence whether
an event can be detected and reported or not in cit-
izen science (CS)-based hazard assessment. Although
event a low impact landslide event can be detected and
reported by a citizen scientist, we hypothesize that the
more disastrous an event is, the higher is the chance
that such an event will be discussed on different plat-
forms and the easier it will be for a citizen scientist to
detect it.

The nature of impact and type of element affected
also matters. For instance, an event that involves a

fatality attracts more public attention than the one
involving only crop damage. Similarly, an event that
blocks an access road can be easier to detect than
the one that only cause it to crack. Therefore, using
type of element affected, nature of impact and mag-
nitude of impact caused criteria, different weights
were assigned based on experience and expert judge-
ment as shown in tables 6 and 7. For each type of ele-
ment affected, the weights assigned were converted to
relative weights by dividing the biggest wight assigned
to the smallest so that all values range from 0 to 1.
Since one landslide event can impact on multiple ele-
ments, the relative weights of different affected ele-
ments for each of the respective event were added
together to come up with the total impact value for
that particular landslide event.
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Table 6. Criteria for weighing of impacts based on the type of element and nature of impact on a scale of 1–5 (1—attract low public
attention, 5—attract high public attention).

Road
damage
ranking Weight

House
damage
ranking Weight

Direct
impact
on people Weight Crop damage Weight

No damage 1 No house 1 No impact 1 No crop damage
(pasture or forest)

1

Cracked 2 Cracked 2 Displaced 3 Partially damaged 2
Covered by
debris/soil

3 Wall/roof
damage

4 Hospitalized 4 Completely
destroyed

3

Destroyed 4 Destroyed 5 Some people
killed

5 — —

Table 7. Criteria for weighing impact based on the magnitude of impact on different types of elements at a scale of 1–10 (1—attract low
public attention, 10—attract high public attention).

Number

people

displaced Weight

Number

of people

hospitalized Weight

Number

people

killed Weight

Number

of houses

affected Weight

Length

of road

affected (m) Weight

Area

of crop

damage

(Sq.m) Weight

0 0 0 0 1 5 0 0 0 0 ⩽100 1

⩽5 3 ⩽5 4 2 8 ⩽5 2 ⩽5 1 ⩽500 2

⩽10 5 ⩽10 6 >2 10 ⩽10 4 ⩽10 2 ⩽1000 3

⩽15 7 ⩽15 8 — — ⩽15 6 ⩽15 4 ⩽2000 4

⩽20 8 >15 10 — — ⩽20 8 ⩽20 6 ⩽3000 5

⩽25 9 — — — — ⩽25 9 ⩽25 8 ⩽4000 6

>25 10 — — — — >25 10 ⩽30 9 ⩽6000 7

— — — — — — — — >30 10 ⩽8000 8

— — — — — — — — — — ⩽10 000 9

— — — — — — — — — — >10 000 10

Appendix C. Logistic regression results
(table 8) andmarginal effect post
estimation (figure 5) to determine
threshold for landslide area effect on
landslide detectability using satellite
imagery

A logistic regression was performed for land-
slide detectability through satellite imagery as

a dependent variable and slope, landslide area,

altitude and NDVI as independent variables.

Slope, landslide area and altitude influence pos-
itively on the detectability. The marginal effect

post estimation results (figure 5) show that as

the landslide area reduces, the chances of miss-
ing out some landslides on a satellite image

increase.
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Table 8. Logistic regression results for factors that influence landslide detection using satellite imagery. z statistics in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Variable Odds ratio

Slope .963∗∗∗

Land slide area 1∗∗∗

Altitude .999∗∗∗

Normalized difference vegetation index (NDVI) 30.565
Constant .959
Tjur’s D 0.226
Prob > chi2 0.000

Figure 5.Marginal effect plot of landslide detectability using satellite imagery against landslide area.
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